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Abstract

An iterative stabilized fractional step scheme abbreviated as I-CNBS–CG is developed, in which the Crank–Nicolson method based
split (CNBS) scheme and the characteristic-Galerkin (CG) method are, respectively, used to discretize and solve the non-Newtonian
momentum–mass conservation equations and the energy conservation equation in consideration of their convective character. Owing
to introduction of an iterative procedure into the scheme the stability of the proposed scheme in time domain is greatly enhanced
and much larger time step sizes are allowed to be used than those limited in existing explicit and semi-implicit ones. The proposed I-
CNBS–CG scheme particularly suits to numerically model the non-isothermal non-Newtonian fluid flows with moderate or high viscos-
ity and low thermal conductivity, such as molten polymer flow process in a mould cavity. Numerical experiments with the power-law
fluid model demonstrate the improved performances of the proposed scheme.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fractional step algorithms have enjoyed widespread
popularity since the original works of Chorin [1] and
Temam [2] for incompressible flow problems. One of the
main reasons for this popularity relies on the computa-
tional efficiency of the algorithms [3], mainly owing to
uncoupling of the pressure term from the velocity compo-
nents. On the other hand, the algorithms were used as a
stabilization technique to circumvent the LBB restrictions
(also referred to the inf-sup condition, which precludes
the use of elements with equal low order interpolations
for velocities and pressure, unless special stabilization tech-
niques are used) though recent studies [4,5] indicate that
this bonus is not available for all types of fractional step
schemes, nevertheless that is not the focus of this paper,
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and indeed only those elements satisfying the LBB condi-
tion are used in this paper.

The explicit (or semi-explicit) form of the algorithm is
popular and widely employed in practical engineering com-
putations since its simplicity in programming and economy
in computational efforts required for each time step, but at
the expense of conditional stability, which implies that the
time steps will be inevitably small and a restriction in max-
imum time step size is imposed to the algorithm. Particu-
larly in modeling high-viscosity (low Reynolds number)
fluid flows such as molten polymer flow in injection mold-
ing, the maximum time step size allowed for the explicit
form of the algorithm decreases with increasing viscosity
that reduces the efficiency of the numerical solution proce-
dure. Though the limitation in the maximum time step size
to the explicit form of the algorithm can be alleviated in the
semi-explicit form to some extent, numerical results of test
examples [6] indicate that the limitation still restricts appli-
cations of the algorithm with acceptable efficiency and
accuracy.
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Nomenclature

c heat capacity
D0 a constant matrix equal to diag(22211 1)
Dij rate of strain tensor
g body force
h(Du) higher-order differential
I3 the 3 � 3 identity matrix
k thermal conductivity
m consistency coefficient
n power law index
Nu finite element shape functions for velocity (Np,

NT for pressure and temperature)
p pressure
Pe thermal Peclet number
S operator matrix
t time
Dt time step size
Dtmax maximum time step size
T temperature
T0 temperature along the solid wall boundary
Tref reference temperature
Tentry temperature at the inlet

ui velocity component in i-direction (i = 1, 2, 3)
u�i auxiliary velocities
x, y horizontal and vertical coordinates
X0, Y0 length and height of the cavity

Greek symbols

a coefficient to normalize the fluid flux equal to
unit at the entry

b temperature dependent coefficient
_c rate of equivalent strain
_c0 a constant rate of equivalent strain (10�4)
g L2 norm of the relative error
h time discretization choice
k a material time constant
l non-Newtonian viscosity
q fluid density
/ thermal dissipation function
C boundary

Superscript

-(overbar) nodal values
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Two modified schemes of the fractional step algorithm
have been proposed for finite element solutions of incom-
pressible N–S equations [6]. They are based on introducing
an iterative procedure into the algorithm to make both the
diffusive and convective terms satisfy the momentum con-
servation equation in an implicit sense. Other schemes for
introducing the iterative procedure into the fractional step
algorithm can be found in [7,8]. The proposed iterative
schemes allow much larger time step sizes to be used for
the numerical solutions of incompressible N–S equations
with different values of the Reynolds number ranging from
low to high viscosities.

The numerical simulation of non-Newtonian fluid flow
has attracted increasing attentions due to its comprehen-
sive applications to engineering practices such as chemical
process industries, food and construction engineering,
petroleum production, bioengineering, etc [9–14]. As
compared with the numerical solution procedure for the
Newtonian fluid flow governed by incompressible N–S
equations, non-linearity of the solution procedure for the
non-Newtonian fluid flow stems from not only the convec-
tive term in the momentum equation but also the variation
of its viscosity with respect to strain rates depending on dis-
tributions of the primary variables, i.e. the velocities and
the pressure, to be determined. In this view point to intro-
duce the iterative process into the scheme is rather logical
and especially desired to ensure the satisfaction of the
non-linear momentum conservation with acceptable accu-
racy and efficiency.

In this paper, the iterative scheme of the fractional step
algorithm abbreviated as I-CNBS scheme presented in [6] is
extended to simulate the non-Newtonian fluid flow coupled
with non-isothermal field. (This scheme was presented as
Taylor–Galerkin like based split method in [6], while after
a sophisticated consideration, it may be more appropriate
to classify the scheme as a Crank–Nicolson method based
split one, upon which it is named as I-CNBS scheme in this
paper.)

The solution procedure for non-isothermal non-Newto-
nian fluid flows is further complicated since the additional
non-linearity arising from the dependence of the fluid vis-
cosity on temperature and the influence of the velocity–
pressure field of the fluid flows on the temperature distribu-
tion, particularly for the convection dominated flow
problems.

The energy conservation equation to govern the temper-
ature field of fluid flows and its evolution with respect to
time can be written in terms of the temperature variable
for incompressible flow computations. The energy conser-
vation equation is identical in the form to scalar convec-
tion-diffusion equation. As the standard finite element
interpolation approximation is not valid for convection-
diffusion equations with the character of non-self-adjoint
operator a stabilized method is required to develop for
the discretization of the energy conservation equation. In
the present work, the energy conservation equation is dis-
cretized in spatial domain using the characteristic-Galerkin
(CG) method.

Due to the coupled effects between the velocity–pressure
field and the temperature field, a simultaneous solution
procedure for nodal velocities, nodal pressures and nodal
temperatures, as primary variables, is generally required
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in principle. However, the coupling of the energy conserva-
tion equation with the momentum and mass conservation
equations is rather weak in incompressible flows, the
energy conservation equation can be discretized and solved
separately from the discretization and solution proce-
dure for the momentum and mass conservation equations
in a staggered solution strategy, particularly in view of
computational efficiency and the structure of existing frac-
tional step algorithm for the velocity–pressure solution
procedure.

Indeed an iterative procedure for incompressible non-
isothermal non-Newtonian fluid flows abbreviated as I-
CNBS–CG is constructed so that a staggered solution
scheme is particularly designed to solve the velocity–pres-
sure variables by using CNBS scheme for the momentum
and the mass conservation equations and to solve the tem-
perature variables by using CG method for the energy con-
servation equation. The iterative process is performed over
both CNBS and CG solution procedures. It is remarked
that the proposed I-CNBS–CG scheme is particularly
suitable for such a solution strategy in its solution frame
and beneficial to accuracy and efficiency of the solution
procedure.

The theoretical analysis in the truncation error and sta-
bility for the numerical simulation of Newtonian fluid flow
by using the proposed I-CNBS scheme has been carried out
[15]. However, its extension to non-Newtonian fluid flow is
not straightforward, instead, is considerably difficult to
tackle. One of the main reasons for this is that the discret-
ized momentum equation (9) in non-Newtonian fluid flow
is no longer equivalent to its split form of Eqs. (10) and
(11). In fact, an approximation to the diffusive term of
Eq. (9) is introduced in the splitting procedure, therefore,
the truncation error analysis for Eqs. (10) and (11) cannot
simply proceed with the analysis for Eq. (9). In addition,
the diffusive term is no longer able to be expressed as the
second order derivative of the velocity due to the variable
viscosity and consequently the von Newman method in
common use for the stability analysis does not apply any
more and some more sophisticated method for the stability
analysis is required. Indeed in this paper, the improved per-
formance of the scheme is demonstrated with the numerical
results for the particular examples, i.e. plan Poiseuille flow
problem for isothermal case and 4:1 contraction flow prob-
lem for non-isothermal case, given in the Section 3.
2. Governing equations and the iterative fractional step
scheme for non-isothermal non-Newtonian fluid flows

Momentum, mass and energy conservation equations
for incompressible flows can be written in the matrix-vector
form as

qut þ qu � ru ¼ qgþ STðlD0SÞu�r � ðpI3Þ ð1Þ

r � u ¼ 0 ð2Þ

qcT t þ qcu � rT ¼ r � ðkrT Þ þ / ð3Þ
where the velocities ui, the pressure p and the temperature
T are the primitive independent variables. q is the fluid den-
sity, g = [g1 g2 g3] the body forces, D0 = diag(222111), I3

the 3 � 3 identity matrix and operator matrix S

ST ¼
o=ox1 0 0 o=ox2 0 o=ox3

0 o=ox2 0 o=ox1 o=ox3 0

0 0 o=ox3 0 o=ox2 o=ox1

2
64

3
75
ð4Þ

c is heat capacity and k is thermal conductivity relating to
the thermal diffusion, both of them are considered as con-
stants in this paper. Thermal dissipation / is given as

/ ¼ l
ouj

oxi
þ oui

oxj

� �
ouj

oxi
ð5Þ

l is the non-Newtonian viscosity, the well-known power-
law model [16–19] is considered in the present work, the
segmented form of which is given as

l ¼ m _cn�1
0 e�bðT�T ref Þ if ð _c 6 _c0Þ

l ¼ m _cn�1e�bðT�T ref Þ if ð _c > _c0Þ

(
ð6Þ

where the parameters m and n are called the consistency
coefficient and the power law index, respectively, b is called
the temperature dependency coefficient, Tref is a reference
temperature, constant _c0 ¼ 10�4 is adopted in this paper.
_c is the rate of equivalent strain defined as

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DijDji

p
Dij ¼

1

2

ouj

oxi
þ oui

oxj

� �
ð7Þ

where Dij is the rate of strain tensor.
When thermal effects are ignored, Eq. (7) can be written

as

l ¼ m _cn�1
0 if ð _c 6 _c0Þ

l ¼ m _cn�1 if ð _c > _c0Þ

�
ð8Þ
2.1. I-CNBS scheme for isothermal non-Newtonian fluid flow

Before proceeding with the split procedure of the frac-
tional step scheme, we consider the discretization of Eq.
(1) in time domain within a typical time sub-interval
[tn, tn+1] with Dt = tn+1 � tn, which gives the form of the
finite difference approximation (this form also can be clas-
sified as the single step h method [19]) as

q
Dt
ðunþ1 � unÞ ¼ qg� ðqu � ruÞnþh2 þ STðlD0SÞu

� �nþh1

�rpnþh ð9Þ

where h1, h2 and h stand for time discretization choices of
diffusive term, convective term, and pressure gradient term,
respectively. To construct the fractional step scheme h 6¼ 0
for the pressure gradient term is required and h = 0.5 is
usually taken for CN implicit scheme. Different choices
for h1, h2 2 [0,1] corresponding to different schemes re-
ferred in the literature may be taken, i.e. h1 = h2 = 0 for
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explicit scheme, h2 = 0, h1 = 0.5 for semi-implicit (CN)
schemes and 0 < h1, h2 6 1 for full-implicit forms. For sec-
ond-order accuracy of the discretization in time domain
h1 = h2 = h = 0.5 for CN scheme is adopted in this paper.

An auxiliary variable u� is introduced in such a way that
Eq. (9) is written in the form as below

q
Dt
ðu� � unÞ ¼ qg� ðqu � ruÞnþh2 þ STðlnþh1 D0SÞ

� h1ðu� � unÞ þ un½ � � rpn ð10Þ
q
Dt
ðunþ1 � u�Þ ¼ STðlnþh1 D0SÞ h1ðunþ1 � u�Þ

� �
� hrDp

ð11Þ

Removing the u* terms from the right-hand sides to the
left-hand sides, Eqs. (10) and (11) can be written as

q
Dt

I3 � h1STðlnþh1 D0SÞ
h i

ðu� � unÞ

¼ qgþ STðlnþh1 D0SÞun � ðqu � ruÞnþh2 �rpn ð12Þ
q
Dt

I3 � h1STðlnþh1 D0SÞ
h i

ðunþ1 � u�Þ ¼ �hrDp ð13Þ

Taking the divergence of the vector Eq. (13) and substitut-
ing the incompressibility condition (2) into Eq. (13) result
in the Poisson equation for the pressure given as

hr2Dp ¼ q
Dt
r � u� þ h1r � r � ½lnþh1rðunþ1 � u�Þ�

� 	
¼ q

Dt
r � u� þ hðDuÞ ð14Þ

The term h1STðlnþh1 D0SÞðunþ1 � u�Þ in Eq. (13) resulted
from a consistent derivation is discarded in Eq. (14), which
can be regarded as part of the approximation introduced
and inherent to the split scheme. The reasons for discarding
the term are twofold. On the one hand, the dropped term is
the differential of the difference (un+1 � u*) one-order high-
er than the first term at the right-hand side of Eq. (14). The
justification of discarding the term may be expected and in-
deed it is validated by the numerical study [20,21] that
omission of the term does not cause inaccuracy, instead
enhances stability of the scheme. On the other hand,
preservation of the term will induce severe difficulties in
the numerical solutions of Eq. (14) for the pressure.

To fulfill the momentum conservation equation for
incompressible flow in the implicit sense from the view of
both convective and diffusive terms, an iterative procedure
is introduced to construct the so-called I-CNBS scheme of
the stabilized fractional step scheme based on Eqs. (12)–
(14) as follows:

(1) Let unþ1
0 ¼ un and the number of iterations i � 1.

(2) Compute unþh1
i , unþh2

i by u
nþhj
i ¼ ð1� hjÞunþ

hju
nþ1
i�1 ðj ¼ 1; 2Þ and compute lnþh1 ¼ lðunþh1Þ accord-

ing to the constitutive equation at local points, then
use unþh1

i , unþh2
i and lnþh1 to solve for u�i by Eq. (12).

(3) Determine Dpi by the solution of the Poisson equa-
tion (14) and obtain pnþ1

i ¼ pn þ Dpi.
(4) Solve Eq. (13) to determine unþ1

i by using u�i and Dpi.
(5) Check for convergence of the ith iteration, if kðQnþ1
i �

Qnþ1
i�1 Þ=Qnþ1

i�1 k1 6 e ðQ ¼ u; pÞ, terminate the iteration
loop, otherwise i � i + 1 and go to (2).
2.2. Characteristic based temporal discretization of the

energy equation

The time discretization of Eq. (3) along the characteris-
tic gives the form of the characteristic-Galerkin method as

qc
Dt
ðT nþ1�T nÞ

¼�qcunþ1=2
j

oT n

oxj
þDt

2
qc un

l

oun
j

oxl

oT n

oxj
þunþ1=2

j unþ1=2
k

o2T n

oxjoxk

� �

þ k
o2T nþh3

oxjoxj
�ð1�h3ÞkDtunþ1=2

k

o

oxk

o2T n

oxjoxj

þ/nþh3 �ð1�h3ÞDtunþ1=2
k

o

oxk
/nþOðDt2Þ ð15Þ

h3 = 0.5 is adopted in this paper. Eq. (15) can be further
written in the matrix-vector form as

qc
Dt

I3�h3kr2

 �

ðT nþ1�T nÞ

¼�qcunþ1=2 �rT nþ kr2T nþ/nþh3

þDt
2

qc ðun �runÞ �rT nþunþ1=2 � ðunþ1=2 �r2T nÞ
� �

�ð1�h3ÞDtkðunþ1=2 �rÞr2T n�ð1�h3ÞDtðunþ1=2 �rÞ/n

ð16Þ

This is the form of the characteristic-Galerkin method that
will be used in the following sections.

2.3. Spatial discretization

The fractional step algorithm performs time discreti-
zation before the spatial discretization. The primitive
unknown variables ui, p, T are spatially approximated
using standard finite element shape functions Nu, Np, NT

and expressed in terms of their nodal values �ui; �p; �T as

ui ¼ Nu�ui; p ¼ Np�p; T ¼ NT
�T ð17Þ

By using the standard Galerkin procedure, the weak forms
of Eqs. (12)–(14) and (16) along with the weak forms of
respective natural boundary conditions can be written as [6]

q
Dt

Mþ h1ðKuÞnþh1 � h1ðKC
u Þ

nþh1

h i
ð�u� � �unÞ

¼ �ðKuÞnþh1 �un � qðC�uÞnþh2 þ LT�pn þ qMgþ fs ð18Þ
qc
Dt

MT þ h3KT � h3KC
T


 �
ðTnþ1 � TnÞ

¼ �qcCT Tn � KT Tn þUþ fT

� qc
Dt
2
ðC1 � C2Þ�un þ ð1� h3ÞDtKT 2�u

n þ ð1� h3ÞDtU2

ð19Þ
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hKpD�p¼� q
Dt

L�u� þ fp ð20Þ
q
Dt

Mþh1ðKuÞnþh1 �h1ðKC
u Þ

nþh1

h i
ð�unþ1��u�Þ¼ hLTD�p ð21Þ

which can be in turn used to solve for nodal values
�u�;Tnþ1;D�p; �unþ1. It is noted that the terms integrated along
the boundaries, generated due to integration by parts
and associated with unknown nodal variables �u�;
�unþ1 and Tnþ1 are removed to the left-hand sides of Eqs.
(18), (19) and (21), respectively.

With omission of the high order terms of both diffusion
and dissipation, Eq. (19) can be simplified as
qc
Dt

MT þ h3KT � h3KC
T


 �
ðTnþ1 � TnÞ

¼ �qcCT Tn � KT Tn þUþ fT � qc
Dt
2
ðC1 � C2Þ�un ð22Þ
2.4. I-CNBS–CG scheme for non-isothermal non-Newtonian

fluid flow

An iterative scheme for incompressible non-isothermal
non-Newtonian fluid flows abbreviated as I-CNBS–CG is
constructed in this section. A staggered solution scheme
is particularly designed to solve the velocity–pressure vari-
ables by using CNBS scheme for the momentum and the
mass conservation equations and to solve the temperature
variables by using CG method for the energy conservation
equation. The iterative process is performed over both
CNBS and CG solution procedures.

It is remarked that the staggered solution procedure of
the proposed I-CNBS–CG scheme is particularly fit in
the solution structure with the existing fractional step algo-
rithm designed for isothermal N–S fluid flows. Eq. (22)
derived by the characteristic-Galerkin (CG) method to
solve for the nodal temperatures as the primary variables
is simply inserted into the solution procedure of the frac-
tional step algorithm for isothermal incompressible fluid
flow derived by CNBS scheme.

The iterative procedure described in Section 2.1 is intro-
duced to construct the stabilized fractional step scheme
abbreviated as I-CNBS–CG in terms of Eqs. (18), (20),
(21) and (22) as follows:

(1) Let �unþ1
0 ¼ �un, Tnþ1

0 ¼ Tn and the number of iterations
i � 1.

(2) Compute �unþh1
i , �unþh2

i , �unþh3
i , Tnþh1

i , Tnþh3
i by Anþhx

i ¼
ð1� hxÞAnþ hxA

nþ1
i�1 ðA¼ �u;T; hx ¼ h1;h2;h3Þ and

compute lnþh1 ¼ lðunþh1 ;T nþh1Þ, lnþh3 ¼ lðunþh3 ;T nþh3Þ
according to the constitutive equation at local points,
then use them to solve for �u� and Tnþ1

i by Eqs. (18)
and (22), respectively.

(3) Determine D�p by the solution of the Poisson equation
(20) and obtain �pnþ1 ¼ �pn þ D�p.

(4) Solve Eq. (21) to determine �unþ1
i by using �u� and D�p.

(5) Check for convergence of the ith iteration, if
Qnþ1

i �Qnþ1
i�1

� 
=Qnþ1

i�1

�� ��
1 6 eðQ ¼ �u;T; �pÞ, terminate

the iteration loop, otherwise i � i + 1 and go to (2).
It should be noted that it is convenient to solve Eq. (18) for
�u� and Eq. (22) for Tnþ1

i simultaneously since the two equa-
tions possess similar structures.

To demonstrate the performance of the presented I-
CNBS–CG scheme in solving non-isothermal non-Newto-
nian fluid flow problems, we take a scheme to run the same
example problems in parallel for the purpose of compari-
sons of numerical results. The scheme is assumed to form
on the basis of existing CNBS scheme designed for isother-
mal incompressible flows and its extension to the non-iso-
thermal case, i.e. the energy conservation equation is also
discretized by using the CN method in time domain as
bellow

qc
Dt

MT þ h3KT � h3KC
T


 �
ðTnþ1 � TnÞ

¼ �qcCT Tnþh3 � KT Tn þ Uþ fT 1 ð23Þ

The assumed solution scheme is also designed in the stag-
gered strategy to solve the velocity–pressure variables and
the temperature variables by means of CNBS and CN
methods, respectively. To make the results obtained by
the proposed I-CNBS–CG and the above assumed scheme
comparable, the iterative procedure is also introduced into
the assumed scheme abbreviated as I-CNBS–CN, in which
the iterative procedure is just as same as that used for I-
CNBS–CG except using Eq. (23) instead of Eq. (22).

3. Numerical results

3.1. Isothermal plane Poiseuille flow problem

The power-law model given in formula (8) is adopted to
constitutively model the non-Newtonian behavior in this
example. The geometry of the problem along with the
5 � 30 element mesh is shown in Fig. 1a and b. Non-equal
order interpolation elements, i.e. T6P3 triangle elements
with 6 noded quadratic interpolation for the velocities
and 3 noded linear interpolation for the pressure are used
in this example. No slip conditions are prescribed at the
solid wall boundaries and p = 0 is prescribed at the exit
of the mould cavity. The constant velocity components at
the entry boundary are prescribed as

uy ¼ 0;

uxð0; yÞ ¼ a
n

nþ 1

1

m

� �1=n Y 0

2

� �1þ1=n

� y � Y 0

2

����
����
1þ1=n

" #

ð24Þ

where m and n are power-law parameters, Y0 is the height
of the cavity, a is the coefficient to normalize the fluid flux
equal to unit at the entry. The transient solutions for the
example can be regarded as a device to obtain the steady
state solution. The theoretical solution for the pressure at
the steady state of the Poiseuille flow problem is given by

pT ¼ anðX 0 � xÞ ð25Þ
where X0 is the length of the cavity.
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Fig. 1. The plane Poiseuille flow problem: (a) schematic diagram; (b) mesh
plot.

Table 1
Comparisons of maximum time step sizes Dtmax (s) taken for different
versions of the fractional step algorithm by using T6P3 elements in the
solution for the plane Poiseuille flow problem with different power law
indexes (in satisfaction of the convergence and the accuracy requirements)

CBS CNBS I-CNBS

n = 0.8 0.01 1 1
n = 0.5 0.004 0.2 1
n = 0.3 Hard to converge 0.1 0.3
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In this example, the consistency coefficient m is taken as
100 Pa s, the problem is tested with three different values of
power law index, i.e. n = 0.8, n = 0.5 and n = 0.3. It is
understood that non-linear behavior of non-Newtonian
fluid flows will become more prominent in this example
at the zone near Y = 0.5 where the fluid viscosity varies
along the Y-axis with high gradient, particularly as devia-
tion of the value of power law index from unity increases
as shown in Fig. 2. Indeed it is observed that as n = 0.3
is used the fluid viscosity varies along the Y-axis in a range
of about 3.5 digital level. Consequently the maximum time
step size allowed to be used for the example will decrease
also with increasing deviation of the value of power law
index from unity. Further, severe non-linearity will also
bring a tough challenge to numerical methods to be used.
The performances of the proposed scheme I-CNBS of the
fractional step algorithm are compared with other two
existing versions of the algorithm in accuracy and efficiency
in carrying out this example. They are semi-implicit CNBS
scheme mentioned above and the CBS [22,23] algorithm.
Table 1 gives the maximum time step sizes allowed to be
used for the different versions of the fractional step algo-
rithm for numerical solutions of the problem with the three
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Fig. 2. Viscosity profiles for Poiseuille flow problem of power-law fluids.
different values of power law index under acceptable con-
vergence rate (number of time steps to achieve the steady
state solution) and accuracy (the L2 norm of the pressure
error with respect to the analytical solution (25) is g 6 3%).

It is observed that the proposed iterative scheme I-
CNBS performs much better in numerical solutions of
the problem than the existing explicit algorithm CBS and
semi-implicit scheme CNBS. The transient solutions con-
verge to the steady state solution for CBS algorithm in
the case of n = 0.8 with Dtmax = 0.01 s, which is much
smaller than the value of Dtmax allowed to be used for
the proposed I-CNBS, and what is worse, Dtmax for CBS
algorithm gets further smaller with decreasing value of
power law index until even no convergence is achieved in
the case of n = 0.3, i.e. the transient solutions do not con-
verge to the steady state solution after a huge number of
time steps even with a very small time step size such as
Dt = 10�5 s. It is noted that the effects of the iterative pro-
cedure introduced into the scheme can be particularly dem-
onstrated by a comparison of the maximum time step size
required to CNBS and I-CNBS for the problems with mod-
erate and low power law indices, i.e. the maximum time
step sizes for the scheme I-CNBS five and three times of
those for the scheme of CNBS for the cases of n = 0.5
and n = 0.3, respectively. (It should be noted that
Dt = 1 s is considered as sufficient large time step size here
although a time step size larger than Dt = 1 s may be used
with acceptable convergence rate and accuracy, so do the
other examples in this paper.)

The proposed I-CNBS scheme possesses the 2nd order
convergence rate in temporal discretization as it is used
to simulate the non-Newtonian flows. It can be indicated
by checking the transient solutions at the ‘‘start-up” pro-
cess, i.e. the unsteady state stage, of the same plane Poiseu-
ille flow problem as described above. Particularly the
problem is performed to calculate the pressure and velocity
fields at t = 2 s with the use of different time step sizes. As
there is no analytical solution available for the pressure at
the unsteady state of the plane Poiseuille flow problem the
finite element solutions with the refined 10 � 60 element
mesh and the refined time step size 10�4 s are taken as
the reference solutions. The relative error in pressure of
the numerical solution obtained by I-CNBS scheme is mea-
sured by the L2 norm defined as the normalized square of
the pressure difference between nodal values obtained
by the reference solution and the numerical solution using
the 5 � 30 element mesh.
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Fig. 3. Pressure error obtained by the proposed I-CNBS scheme at t = 2 s
versus the time step.

ux = uy = 0 
T = T0

ux = u(y) 

uy = 0 

T = T(y)

uy = 0 qy=0

p = 0

Fig. 4. The 4:1 contraction flow problem: (a) schematic diagram; (b) mesh
plot.
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The curves in Fig. 3, illustrate the relative errors in pres-
sure which decrease with decreasing time step sizes for the
different values of the power law index n used in the present
simulation and demonstrate the second order accuracy for
the pressure solution using the proposed I-CNBS scheme.
It should be pointed out that the tested ‘‘start-up” process
of the Poiseuille flow with the consideration of a specified
discontinuity of the velocities prescribed at the entry of
fluid flow, while null values of the pressure and velocity
variables over the whole domain being specified, at t = 0
presents a tough task to challenge the performances of all
numerical methods.

The performance, particularly the accuracy of the pro-
posed I-CNBS scheme in solving the practical problems
such as modeling of the injection molding process [6], in
which there is no jump in the pressure and velocity fields
with respect to time and space, will be greatly improved
as compared with the accuracy of the tested case with
n = 0.3 illustrated in Fig. 3.
Table 2
Details of meshes employed

Mesh Nodes Elements Typical element size between the lip and
salient

Mesh1 731 330 0.15
Mesh2 877 398 0.125
Mesh3 1107 504 0.09375
3.2. Thermal 4:1 contraction problem

The numerical simulation of the flow in a 4:1 contrac-
tion problem represents a relatively difficult benchmark
problem. Here, we examine the accuracy and convergence
properties of the proposed I-CNBS–CG scheme for this
problem by simulating the non-isothermal flow of power
law fluids with temperature dependent viscosity.

By symmetry, only one half of the cavity of the 4:1
contraction problem is taken and discretized. Schematic
statement of the problem with geometry and boundary
conditions is depicted in Fig. 4a. The finite element mesh
of T6P3 elements with the densities varying over the region
is given in Fig. 4b (mesh1). To study the convergence of the
proposed scheme in the spatial discretization, the other two
refined meshes described by Table 2 are taken to perform
the same example. The temperature T0 along the three seg-
ments of the solid wall boundary is prescribed. The two
cases associated with the two different values of T0, i.e.
T0 = 0 �C and T0 = 100 �C are particularly considered in
the example. The temperature at the inlet is prescribed as
T(y) = Tentry = 50 �C except at y = 0 where T(y = 0) = T0

is prescribed. The boundary condition for the pressure is
prescribed to be zero, i.e. p = 0 at the exit of the cavity
of the 4:1 contraction problem. No slip conditions are
prescribed at the solid wall boundaries. The velocity in
the x-axis at the entry boundary is prescribed as

uxð0; yÞ ¼ ayð2Y 0 � yÞ ð26Þ
where Y0 is the height of the exit equal to unit, a is the coef-
ficient to normalize the fluid flux equal to 0.04 m2/s at the
entry, i.e. a = 0.03.

The thermal power-law model of viscosity is adopted
in this example. Material parameters of the liquid are
m = 104Pa s, n = 0.5, Tref = 50 �C, b = 0.01 �C�1, q =
1000 kg/m3, k = 1 W/m K, respectively. The problem is
particularly tested with the four thermal Peclet numbers,
i.e. Pe = 1, 10, 100, 1000 corresponding to capacities
c = 0.05, 0.5, 5, 50 Ws/kg K, respectively. T0 = 0 �C and
T0 = 100 �C can be regarded as cooling and heating bound-
ary conditions, respectively, in view of the inlet tempera-
ture Tentry = 50 �C. In the following, the numerical results
obtained for the two cases of T0 = 0 �C and T0 = 100 �C
will demonstrate the effects of the different thermal bound-
ary conditions.
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Fig. 6. Pressure drops calculated on different meshes for different Pe
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Fig. 5 gives temperature profiles for the two cases with
different values of thermal Peclet number equal to 1, 100,
respectively, using mesh1. We may notice from these pro-
files the influence of increasing quantity of heat transferred
due to convection, as compared with that of the quantity of
heat transferred due to conduction, on the temperature dis-
tribution and the maximum of temperature in the flow
field. For the case T0 = 0 �C (the cooling wall case) the
zones with low temperatures appear near the wall and
diminish as Pe increases, whereas for the case T0 =
100 �C (the heating wall case) the zones with low tempera-
ture appear near the inlet and expand with increasing value
of Pe. We may also observed from Fig. 5a and c existence
of the so-called local ‘hot spots’, which occur around the
centerline at the contraction zone of the cavity and are
the consequences of the viscous dissipation as a source of
heat generation. As the value of Pe increases, the convec-
tion term, instead of viscous dissipation, dominants the
heat transfer, these ‘hot spots’ tend to disappear as
observed by other authors [24,25].

The curves of the axial pressure drop defined as
(px = 0 � px = 6)y = 1 against Pe number for the three meshes
using two different values of the prescribed temperature T0
Fig. 5. Temperature profiles for the flow of a thermal power-law fluid in a
4:1 contraction problem. (a) Pe = 1, T0 = 0 �C, Dt = 0.05 s; (b) Pe = 100,
T0 = 0 �C, Dt = 0.1 s; (c) Pe = 1, T0 = 100 �C, Dt = 0.1 s; (d) Pe = 100,
T0 = 100 �C, Dt = 0.1 s.

numbers of a thermal power-law fluid in a 4:1 contraction problem.
are given in Fig. 6. It is clear that the solutions for the two
cases of T0 converge consistently with high rate as mesh is
refined. It is observed from Fig. 6 that the pressure drops
for the case T0 = 0 �C are much higher than those for the
case T0 = 100 �C, so that the external forces with higher
strength normal to the inlet boundary are required to
impose for the case T0 = 0 �C in order to keep the velocities
in the x-axis prescribed at the inlet. It is also noted that the
pressure drops increase with increasing value of Pe for both
cases. The viscosities of the fluid in this example are rela-
tively high so that the diffusive term is a small quantity
as compared with the dissipative term, so that the temper-
ature at the local region with relatively high value of the
dissipation term tends to go up. However, as the value of
Pe increases significantly the heat convection will dominate
the heat transfer instead of viscous dissipation that
restrains the temperature to go up due to the dissipation
effect and even results, in general, in lowering the tempera-
ture and consequently heightening the viscosity, and makes
the fluid hard to flow, that explains why the pressure drop
increases with increasing value of Pe.

Fig. 7 illustrates the streamlines of the thermal power-
law fluid flow in the cavity of the 4:1 sudden contraction
Fig. 7. Streamlines for the flow with a thermal power-law fluid in a 4:1
contraction problem (Pe = 100).
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problem using mesh1. Even the resulting streamlines are
obtained as Pe = 100 is used, the streamline plots resulted
for the other cases of Pe, i.e. Pe = 1, 10, 1000 are essen-
tially similar to those given in Fig. 7. It is also observed
from Fig. 7 that there is no eddy that occurs in the down
corner of the cavity, where the cross-section of the cavity
is suddenly contract with the ratio 4:1. The pattern of
streamlines for shear-thinning fluid observed in Fig. 7 is
very similar to those published in the literature [24].

The numerical solutions obtained by using the assumed
I-CNBS–CN scheme agree well with those obtained by the
proposed I-CNBS–CG scheme only as thermal Peclet num-
ber is relatively small, for instance, Pe 6 102. While for the
case Pe = 103, the transient solutions converge to the
steady state solution for the I-CNBS–CN scheme is only
achieved as a time step size Dt = 0.01 s, 10 times smaller
than that used for the I-CNBS–CG scheme, is used and
after about 10 times of the time step number, i.e. 4876
steps, used for the I-CNBS–CG scheme are performed.
Moreover, as the thermal Peclet number further increases,
severe node-to-node oscillations will appear in the cavity
and transient solutions fail to converge at all even with
the small time step size Dt = 0.01 s.

4. Conclusions and discussion

An iterative stabilized CNBS–CG scheme for incom-
pressible, non-isothermal, non-Newtonian fluid flows is
presented in this paper.

The momentum and mass conservation equations are
discretized by using the Crank–Nicolson implicit method
based splitting (CNBS) scheme presented in [6], while the
energy conservation equation is discretized by using the
characteristic-Galerkin (CG) method. The iterative proce-
dure is introduced to form the proposed I-CNBS–CG
scheme, in which all the convective terms, diffusive terms
and dissipative terms (for energy equation) are enforced
to satisfy temporally semi-discretized equations in the
implicit format. Numerical studies fulfilled in this paper
indicate that

(1) Introduction of the iterative process into the frac-
tional step algorithm, in general, enhances the critical
time step size to ensure the stability of the scheme,
particularly for the flow problems with moderate
and high viscosities. As a consequence, the CPU time
will be saved in a great deal as the time step size used
increases. The simulation for a polymer injection
molding example with a typical mould shown in
Fig. 8 has demonstrated the superior performance
of the proposed I-CNBS–CG scheme in computa-
tional efficiency over the existing explicit one. The
CPU times required to perform the example for the
two schemes are 218.5 s and more than 106 s, respec-
tively, that prohibits, in fact, the use of the explicit
algorithm in numerical simulations of practical poly-
mer molding processes.
(2) The CG behaves better in the stability and conver-
gence than the assumed CN in solving the energy
equation, particularly for the flow problems with high
thermal Peclet numbers.

(3) The proposed I-CNBS–CG scheme is suitable for
modeling the fluid flows with moderate or high vis-
cosity and low thermal conductivity, such as polymer
solutions, melts, molten glass, etc.

(4) As mentioned above, the objective of this paper is to
develop a scheme to simulate the fluid flows with high
viscosity (low Re) and low thermal conductivity (high
thermal Pe). The numerical study [6] has shown that
for diffusion dominated problems, the iterative CN
behaves better in the stability and allows to use time
step sizes larger than or equal to that used for the iter-
ative CG; while for convection dominated problems,
the CG behaves better in convergence than the CN. It
is known that both Re and thermal Pe reflect the ratio
of convection term to diffusion term. That explains
why we propose the I-CNBS–CG scheme for numer-
ical solutions of incompressible non-isothermal non-
Newtonian fluid flow.
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